Search results

Search for "hydrophobic surfaces" in Full Text gives 40 result(s) in Beilstein Journal of Nanotechnology.

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • applied on top of the PS insulator without the need for an additional water transport layer. Membranes Janus structural membranes with hydrophilic and hydrophobic surfaces are key structures for highly efficient SSGs. Such Janus membranes can be easily produced by filtering or coating hydrophilic
PDF
Album
Review
Published 04 Apr 2023

Roll-to-roll fabrication of superhydrophobic pads covered with nanofur for the efficient clean-up of oil spills

  • Patrick Weiser,
  • Robin Kietz,
  • Marc Schneider,
  • Matthias Worgull and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2022, 13, 1228–1239, doi:10.3762/bjnano.13.102

Graphical Abstract
  • contact angle measurements, especially on hydrophobic surfaces, can further distort the measured values [30]. The quality of the nanofur in terms of its hydrophobicity and oil absorption quantity depends on several processing factors including length of the hairs, their density, and their overall
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • , antimicrobial, and antibiofouling properties, including the formation of an oriented monolayer of bacterial flagellin proteins on hydrophobic surfaces [73], a reduction of oral bacteria adhesion on dental brackets by more than 95% due to a reduced surface free energy [74], and the fabrication of antifouling
PDF
Album
Review
Published 08 Sep 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • ]. Surface charges of the nanomaterials influence cell adhesion, and cells adhere to hydrophilic surfaces more easily compared to hydrophobic surfaces [66]. Additionally, different phases of TiO2 affect the biological properties of the material. For example, the anatase phase absorbs more hydroxy and
PDF
Album
Review
Published 14 Feb 2022

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • which enables controlled and nontoxic biological interactions [18]. The hydrophilicity of the nanocarriers is important, as native hydrophobic surfaces of NPs are rapidly opsonized by hydrophobic serum proteins [19]. For this, surface functionalization has a major role [18]. It alters the surface
PDF
Album
Full Research Paper
Published 02 Dec 2021

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • boundary conditions [10][11][12][13][14][15]. For example, many studies have shown that on hydrophobic surfaces, roughness may lead to a transition to a superhydrophobic state, significantly lowering the ability of liquid drops to stick. In other words, liquids can easily slip along such solid surfaces and
  • by many studies that if the amplitude is comparable to or smaller than the local slip length, then an increase in amplitude leads to a reduction of the effective slip length [86][87]. Among those studies, MD simulations conducted by Yang show that compared with the fluid flow at smooth hydrophobic
  • surfaces, where the true slip length is non-zero, the increase in amplitude leads to an increase in the drag resistance at the fluid–solid interface for rough surfaces of the same nature [86]. Interestingly, when the amplitude of the structured surface is large compared with the local slip length, the
PDF
Album
Review
Published 17 Nov 2021

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

  • Paulina Filipczak,
  • Krzysztof Hałagan,
  • Jacek Ulański and
  • Marcin Kozanecki

Beilstein J. Nanotechnol. 2021, 12, 497–506, doi:10.3762/bjnano.12.40

Graphical Abstract
  • by the changes in the Raman spectra of water. Two types of agents can be distinguished: destructive agents (e.g., most ions, temperature, polar molecules) and structure-ordering agents (e.g., apolar molecules, biological macromolecules, or hydrophobic surfaces [19]). The intensity of the OH
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2021

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • hydrophobic surfaces that induce aggregation and/or the formation of large clusters. When in contact with biological structures, this mechanism provokes capillary clotting and reduces tissue and cellular absorption. To prevent this, nanoparticles are coated with stabilizers, which are added during preparation
PDF
Album
Review
Published 27 Jul 2020

A 3D-polyphenylalanine network inside porous alumina: Synthesis and characterization of an inorganic–organic composite membrane

  • Jonathan Stott and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2020, 11, 938–951, doi:10.3762/bjnano.11.78

Graphical Abstract
  • wetted by the liquid. Equation 1 shows that the Young contact angle on smooth and hydrophobic surfaces (θ > 90°) is further increased by increasing the surface roughness ratio rf. If the fraction of the projected area of the outer surface (which is wetted by the water droplet) becomes about 100% (f = 1
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2020

Coating of upconversion nanoparticles with silica nanoshells of 5–250 nm thickness

  • Cynthia Kembuan,
  • Maysoon Saleh,
  • Bastian Rühle,
  • Ute Resch-Genger and
  • Christina Graf

Beilstein J. Nanotechnol. 2019, 10, 2410–2421, doi:10.3762/bjnano.10.231

Graphical Abstract
  • monodisperse particles with just one UCNP core in the center coated by a thick silica shell are obtained. This method should also be suitable for other NPs with hydrophobic surfaces dispersed in an apolar solvent independent of their chemical composition. Results and Discussion The core particles used in this
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019

Tailoring the stability/aggregation of one-dimensional TiO2(B)/titanate nanowires using surfactants

  • Atiđa Selmani,
  • Johannes Lützenkirchen,
  • Kristina Kučanda,
  • Dario Dabić,
  • Engelbert Redel,
  • Ida Delač Marion,
  • Damir Kralj,
  • Darija Domazet Jurašin and
  • Maja Dutour Sikirić

Beilstein J. Nanotechnol. 2019, 10, 1024–1037, doi:10.3762/bjnano.10.103

Graphical Abstract
  • TNW surfaces [48] agrees with parameters previously reported for different TiO2 polymorphs by Bourikas et al. [58]. The values for hydrophobic surfaces are from Lützenkirchen et al. [59]. The fitted values for the TNWs in the presence of surfactants are intermediate between the bare TNWs and two sets
  • for the purely hydrophobic surfaces. While the parameters appear self-consistent in going from a hydrophilic to a hydrophobic system, it cannot be excluded that the outcome in terms of the slip plane distances is accidental. Thus, another hydrophobic system (the air/water interface) has fitted slip
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2019

Direct growth of few-layer graphene on AlN-based resonators for high-sensitivity gravimetric biosensors

  • Jimena Olivares,
  • Teona Mirea,
  • Lorena Gordillo-Dagallier,
  • Bruno Marco,
  • José Miguel Escolano,
  • Marta Clement and
  • Enrique Iborra

Beilstein J. Nanotechnol. 2019, 10, 975–984, doi:10.3762/bjnano.10.98

Graphical Abstract
  • hydrophobic graphene, which prompted us to investigate the direct non-covalent binding of streptavidin to our bare graphene hydrophobic surfaces. According to [13], streptavidin binds to the sidewalls of carbon nanotubes (CNTs) by means of hydrophobic interactions. It was expected it would bind also to
PDF
Album
Full Research Paper
Published 29 Apr 2019

A comparison of tarsal morphology and traction force in the two burying beetles Nicrophorus nepalensis and Nicrophorus vespilloides (Coleoptera, Silphidae)

  • Liesa Schnee,
  • Benjamin Sampalla,
  • Josef K. Müller and
  • Oliver Betz

Beilstein J. Nanotechnol. 2019, 10, 47–61, doi:10.3762/bjnano.10.5

Graphical Abstract
  • surface, whereas the CA reached between 100° and 120° on the hydrophobic surface (for exact values see Figure 3). The two factor analysis of variance confirmed the significant difference between hydrophilic and hydrophobic surfaces (two-way ANOVA: surface roughness F = 8.5; p = 0.001; surface polarity F
  • , respectively. Generally, the tests were conducted on hydrophilic and hydrophobic surfaces of each roughness. For hydrophilization, the epoxy casts were treated for 5 min with plasma at 30 mA and 0.2 mbar (SCD 030; Balzers Union FL-9496 Balzers, Liechtenstein). For hydrophobization, the casts were placed for 10
  • . nepalensis and uppercase letters for N. vespilloides. Only letters of the same format within the same species, polarity regime (statistical differences between hydrophilic and hydrophobic surfaces are indicated with P*) and claw treatment (statistical differences indicated with -*-) should be compared
PDF
Album
Full Research Paper
Published 04 Jan 2019

Biomimetic surface structures in steel fabricated with femtosecond laser pulses: influence of laser rescanning on morphology and wettability

  • Camilo Florian Baron,
  • Alexandros Mimidis,
  • Daniel Puerto,
  • Evangelos Skoulas,
  • Emmanuel Stratakis,
  • Javier Solis and
  • Jan Siegel

Beilstein J. Nanotechnol. 2018, 9, 2802–2812, doi:10.3762/bjnano.9.262

Graphical Abstract
  • distinguish between surfaces with different wetting behaviors. Superhydrophobic surfaces in yellow (CA > 150°), hydrophobic surfaces in blue (150° > CA > 90°) and hydrophilic surfaces in grey (90° > CA > 10°). The CA of untreated steel is 103° indicated by a solid line. A) Experimental setup, employing a high
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2018

Scanning speed phenomenon in contact-resonance atomic force microscopy

  • Christopher C. Glover,
  • Jason P. Killgore and
  • Ryan C. Tung

Beilstein J. Nanotechnol. 2018, 9, 945–952, doi:10.3762/bjnano.9.87

Graphical Abstract
  • hydrophilic and hydrophobic surfaces matches results reported by Bhushan and co-workers [38]. The scan speed phenomenon was not observed on HOPG at 36% or 70% RH. Goertz et al. [37] found that the viscous interfacial water film did not exist when the hydrophilicity of their oxide-terminated silicon surface
  • . Additionally, nanobubbles on the sample surface may also affect the formation of a thin, highly ordered, viscous water film. Maali et al. [39] posited that the presence of nanobubbles explains liquid slip at the interface and the long-range attraction between hydrophobic surfaces in water. Maali et al. [39
PDF
Album
Full Research Paper
Published 21 Mar 2018

Kinetics of solvent supported tubule formation of Lotus (Nelumbo nucifera) wax on highly oriented pyrolytic graphite (HOPG) investigated by atomic force microscopy

  • Sujit Kumar Dora,
  • Kerstin Koch,
  • Wilhelm Barthlott and
  • Klaus Wandelt

Beilstein J. Nanotechnol. 2018, 9, 468–481, doi:10.3762/bjnano.9.45

Graphical Abstract
  • substantially. An increase in growth rate of such thin deposits in the presence of water has already been reported by various workers [35][36][37][38][39]. On hydrophobic surfaces water does not form ordered adsorption layers as the substrate–water interaction is believed to be considerably lower than the
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2018

The nanofluidic confinement apparatus: studying confinement-dependent nanoparticle behavior and diffusion

  • Stefan Fringes,
  • Felix Holzner and
  • Armin W. Knoll

Beilstein J. Nanotechnol. 2018, 9, 301–310, doi:10.3762/bjnano.9.30

Graphical Abstract
  • negatively charged particles is determined by the relative repulsion of the particles from the like charged confining surfaces. A height above the center of the gap indicates a higher charge on the polymer surface, which does not contain sites that could dissociate. However, it is known that hydrophobic
  • surfaces often attain a negative charge in contact with water, most likely due to the preferential absorption of oxianions [34]. Confined lateral diffusion of nanospheres To measure the lateral diffusion of nanoparticles as a function of gap distance, we exploit the high mechanical stability and tunability
PDF
Album
Full Research Paper
Published 26 Jan 2018

Synthesis and functionalization of NaGdF4:Yb,Er@NaGdF4 core–shell nanoparticles for possible application as multimodal contrast agents

  • Dovile Baziulyte-Paulaviciene,
  • Vitalijus Karabanovas,
  • Marius Stasys,
  • Greta Jarockyte,
  • Vilius Poderys,
  • Simas Sakirzanovas and
  • Ricardas Rotomskis

Beilstein J. Nanotechnol. 2017, 8, 1815–1824, doi:10.3762/bjnano.8.183

Graphical Abstract
  • amphiphilic polymer coating [18] have been developed in order to transfer nanoparticles with hydrophobic surfaces into aqueous media. Furthermore, the multimodal UCNP surface modification field still lacks reference materials and established protocols for functionalization and targeting. Some studies showed
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2017

Measuring adhesion on rough surfaces using atomic force microscopy with a liquid probe

  • Juan V. Escobar,
  • Cristina Garza and
  • Rolando Castillo

Beilstein J. Nanotechnol. 2017, 8, 813–825, doi:10.3762/bjnano.8.84

Graphical Abstract
  • experiments of cylindrical nanofibers dipped in liquids of different γ, where γ is the liquid–vapor surface tension [36]. For contact angles above 50–60°, the spring constants are almost insensible to the contact angle, and although these authors did not explore angles corresponding to hydrophobic surfaces
PDF
Album
Full Research Paper
Published 10 Apr 2017

Biological and biomimetic materials and surfaces

  • Stanislav Gorb and
  • Thomas Speck

Beilstein J. Nanotechnol. 2017, 8, 403–407, doi:10.3762/bjnano.8.42

Graphical Abstract
  • observation by performing simple experiments with Tropaeolum leaves and published the hypothesis that, in a specific manner, double-structured, hydrophobic surfaces are self-cleaning. He further hypothesized that this may be the main biological function of the micro-/nanostructured wax covering many plant
PDF
Editorial
Published 08 Feb 2017

Innovations from the “ivory tower”: Wilhelm Barthlott and the paradigm shift in surface science

  • Christoph Neinhuis

Beilstein J. Nanotechnol. 2017, 8, 394–402, doi:10.3762/bjnano.8.41

Graphical Abstract
  • , self-cleaning surfaces nowadays are well known. The transfer and technical application have received several awards and the trademark “Lotus-Effect” has become a kind of synonym for functional water-repellent or even only hydrophobic surfaces. Follow-up investigations have been published in all major
  • products featuring self-cleaning properties is rather limited, self-cleaning based on rough hydrophobic surfaces initiated a new field of research and represents a paradigm shift in interface science. So what happened and what can we derive? Coming back to the picture of borders introduced above we may use
  • . Although the number of commercially available products exhibiting self-cleaning properties based on rough hydrophobic surfaces similar to those of lotus leaves is rather limited, the field was opened and there was a positive reception from the general public, politics and, most important, industry. Paving
PDF
Album
Commentary
Published 08 Feb 2017

Structural and tribometric characterization of biomimetically inspired synthetic "insect adhesives"

  • Matthias W. Speidel,
  • Malte Kleemeier,
  • Andreas Hartwig,
  • Klaus Rischka,
  • Angelika Ellermann,
  • Rolf Daniels and
  • Oliver Betz

Beilstein J. Nanotechnol. 2017, 8, 45–63, doi:10.3762/bjnano.8.6

Graphical Abstract
  • similar to those of water, they probably show, because of their hydrocarbon components, additional functional properties of technical relevance such as improved resistance towards desiccation and contamination, and beneficial wetting properties towards both hydrophilic and hydrophobic surfaces. The low
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2017

When the going gets rough – studying the effect of surface roughness on the adhesive abilities of tree frogs

  • Niall Crawford,
  • Thomas Endlein,
  • Jonathan T. Pham,
  • Mathis Riehle and
  • W. Jon P. Barnes

Beilstein J. Nanotechnol. 2016, 7, 2116–2131, doi:10.3762/bjnano.7.201

Graphical Abstract
  • frogs appear to be able to adhere to hydrophobic surfaces just as easily as hydrophilic ones [26], which would not be the case if toe pad fluid were pure water. A preliminary biochemical analysis of the toe pad fluid [26] suggests the presence of carboxylic acids which could act as surfactants, lowering
  • the contact angle, and thus allowing frogs to adhere to even strongly hydrophobic surfaces. Our experiments The whole animal tilting experiments provide direct data about the tree frog’s capabilities on rough surfaces, as the slip and fall angles reflect friction and adhesive forces of the frogs [16
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2016

Surface roughness rather than surface chemistry essentially affects insect adhesion

  • Matt W. England,
  • Tomoya Sato,
  • Makoto Yagihashi,
  • Atsushi Hozumi,
  • Stanislav N. Gorb and
  • Elena V. Gorb

Beilstein J. Nanotechnol. 2016, 7, 1471–1479, doi:10.3762/bjnano.7.139

Graphical Abstract
  • adhesive setae, these beetles are able to walk on flooded substrates, including those under water. Their attachment to hydrophilic surfaces was reduced when under water, compared to their attachment in air; whereas the attachment to hydrophobic surfaces under water was considerably stronger, and comparable
PDF
Album
Full Research Paper
Published 18 Oct 2016

Three-gradient regular solution model for simple liquids wetting complex surface topologies

  • Sabine Akerboom,
  • Marleen Kamperman and
  • Frans A. M. Leermakers

Beilstein J. Nanotechnol. 2016, 7, 1377–1396, doi:10.3762/bjnano.7.129

Graphical Abstract
  • the preferential adsorption of the liquid component on the surface. A negative value means that the solvent has a preference to sit next to the surface over the vapour. At χS = 0 we expect a contact angle of 90°. Hydrophobic surfaces are modelled when χS > 0. We will mostly restrict ourselves to
  • spaces is a function of the affinity of the solvent for the substrate. When χS is more negative the Δµ increases to more negative values. Indeed when χS > 0, that is for hydrophobic surfaces, the local binodal occurs at supersaturated solutions. With increasing D the local binodal shifts towards the bulk
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2016
Other Beilstein-Institut Open Science Activities